R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable

نویسندگان

  • T. M. Treweek
  • A. Rekas
  • R. A. Lindner
  • Mark J. Walker
  • J. A. Aquilina
چکیده

α-Crystallin is the principal lens protein which, in addition to its structural role, also acts as a molecular chaperone, to prevent aggregation and precipitation of other lens proteins. One of its two subunits, αBcrystallin, is also expressed in many non-lenticular tissues, and a natural missense mutation, R120G, has been associated with cataract and desminrelated myopathy, a disorder of skeletal muscles (Vicart et al., 1998, Nature Genet. 20:92-95). In the present study, real-time 1H NMR spectroscopy showed that the ability of R120G αB-crystallin to stabilize the partially folded, molten globule state of αlactalbumin was significantly reduced in comparison with wild type αB-crystallin. The mutant showed enhanced interaction with, and promoted unfolding of reduced αlactalbumin, while it showed limited chaperone activity for other target proteins. Using NMR spectroscopy, gel electrophoresis and mass spectrometry (MS) it was observed that, unlike the wild type protein, R120G αB-crystallin is intrinsically unstable in solution with unfolding of the protein over time leading to aggregation and progressive truncation from the C-terminus. Light scattering, MS and size-exclusion chromatography data indicated that R120G αB-crystallin exists as a larger oligomer than wild type αBcrystallin, and its size increases with time. It is likely that removal of the positive charge from R120 of αB-crystallin causes partial unfolding, increased exposure of hydrophobic regions and enhances its susceptibility to proteolysis, thus reducing its solubility and promoting its aggregation and complexation with other proteins. These characteristics may explain the involvement of R120G αB-crystallin with human disease states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.

Stress conditions can destabilize proteins, promoting them to unfold and adopt intermediately folded states. Partially folded protein intermediates are unstable and prone to aggregation down off-folding pathways leading to the formation of either amorphous or amyloid fibril aggregates. The sHsp (small heat-shock protein) αB-crystallin acts as a molecular chaperone to prevent both amorphous and ...

متن کامل

Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function.

alphaB-crystallin, a member of the small heat shock protein family, possesses chaperone-like function. Recently, it has been shown that a missense mutation in alphaB-crystallin, R120G, is genetically linked to a desmin-related myopathy as well as to cataracts [Vicart, P., Caron, A., Guicheney, P., Li, A., Prevost, M.-C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.-M., et al. (1998)...

متن کامل

The interaction of unfolding α-lactalbumin and malate dehydrogenase with the molecular chaperone αB-crystallin: a light and X-ray scattering investigation

PURPOSE The molecular chaperone αB-crystallin is found in high concentrations in the lens and is present in all major body tissues. Its structure and the mechanism by which it protects its target protein from aggregating and precipitating are not known. METHODS Dynamic light scattering and X-ray solution scattering techniques were used to investigate structural features of the αB-crystallin o...

متن کامل

A Knock-In Mouse Model for the R120G Mutation of αB-Crystallin Recapitulates Human Hereditary Myopathy and Cataracts

An autosomal dominant missense mutation in αB-crystallin (αB-R120G) causes cataracts and desmin-related myopathy, but the underlying mechanisms are unknown. Here, we report the development of an αB-R120G crystallin knock-in mouse model of these disorders. Knock-in αB-R120G mice were generated and analyzed with slit lamp imaging, gel permeation chromatography, immunofluorescence, immunoprecipita...

متن کامل

BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017